

Clean Energy for All Europeans package

Do the Commission's Impact Assessments Assign the

Right Role to Energy Efficiency?

www.openexp.eu

Dr Yamina SAHEB Yamina.saheb@openexp.eu

Making the Negawatt dream a global reality

Understanding EE impact assessments requires a lot of reading !

Staff working documents

- EED IA (3 reports with a total of 336 pages)
- EPBD IA (1 report of 121 pages)
- SFSB (1 document of 10 pages)

Complementary documents

- PRIMES report (Technical report on MSs results of EUCO scenarios, 381 pages)
- GEM-E3 report (Technical report on macroeconomic MSs results of the EUCO policy scenarios, 10 pages)
- E3ME report (Summary of E3ME modelling, 8 pages)

Understanding EE impact assessments requires analysing 7 EED scenarios and 4 EPBD scenarios

	EED	EPBD
•	 2016 Reference scenario which does not meet the EU2030 targets 2 core scenarios (EUCO27 and EUCO30) which meet the EU2030 targets and have been used also for RED IA EUCO27 is the baseline scenario used also for other IAs (MDI, ESD) 3 additional scenarios (EUCO+33, EUCO+35, EUCO+40) which go beyond the EU2030 targets 1 sensitivity scenario (EUCO3030) with 30% target for EE and RE 	Reference scenario: No changes in current practice Option 1: Guidance to MS on cost-optimality calculation methodologies to address the gap between calculated and actual consumption Option II (preferred option by the EC) Setting milestones for the decarbonisation of the building stock by 2050 Clarify provisions in cost-optimality calculation methodology Technical building systems (documentation of initial performance and maintain their operational performance over time) Reinforced quality of EPCs Smartness indicator Electro-mobility Option III: Setting milestones for the decarbonisation of the building stock by 2050 Obligation of building owners to renovate their building to a given energy performance standard Clarify provisions in cost-optimality calculation methodology and including additional benefits and going beyond cost-optimality level Technical building systems (documentation of initial performance and maintain their operational performance over time) Reinforced quality of EPCs Smartness indicator Electro-mobility Option III: Setting milestones for the decarbonisation of the building stock by 2050 Obligation of building owners to renovate their building to a given energy performance standard Clarify provisions in cost-optimality calculation methodology and including additional benefits and going beyond cost-optimality level Technical building systems (documentation of initial performance and maintain their operational performance over time) Reinforced quality of EPCs and harmonized template for EPCs based on a common lis of indicators Smartness indicator Electro-mobility

A combination of 7 models was used to provide a comprehensive picture of various impacts of EC scenarios (7 for EED and 4 for EPBD)

Model	Output	Expert's
		access
- PRIMES (Price-Induced Market Equilibrium System)	Energy Balances	N
	GHG emissions , ETS prices	
	Energy system costs	
	Investment expenditures	
- E3ME (Energy-Environment-Economy Model for Europe)	GDP	Ν
- GEM-E3 (General Equilibrium Model for Energy, Economy and	Employment	
Environment interactions)	Balance of trade	
- GAINS (Greenhouse gas and Air Pollution Information and Simulation).	Pollution impacts on human health	Υ
- POLES (Prospective Outlook on Long-term Energy Systems)	International fossil fuel prices	Ν
- IEEM (Industrial Energy Efficiency Model)	Bottom-up assessment of savings potential in industry	Ν
- BEAM ² (Built Environment Analysis Model)	Bottom-up assessment of saving	N

Energy savings are projected to be the "First Fuel" of Europe in 2030 in each of the EUCO scenarios but

EU 2030 primary energy mix in the Commission's scenarios

In the EUCO+40 scenario, the sum of RE and energy savings is projected to overtake the sum of fossil fuels and nuclear

OPENEXP

Energy savings ambition for the next decade in EUCO27 and EUCO30 is lower than the one for the current decade.

Energy savings in the period 2021-2030 (EUCO scenarios) and in the periods 2010-2020 and 2005-2015

EC energy projections are misaligned

2030 Net imports projections of solid fuels, oil and gas in EUCO scenarios and 2030 gas projections in the 2014 EESS

In the EUCO+40 scenario projects gas imports to be almost half of gas import projections in the 2014 European Energy Security Strategy @Openexpe

EUCO scenarios are not aligned with the EU obligations under the Paris Climate Agreement

EU 2030 GHG emissions in EUCO scenarios, IEA 2DS and under the Paris Agreement

The EUCO+40 scenario gives a hope to put Europe in the Paris path

GHG emissions reduction will be driven by the increased energy savings ambition and the increased share of renewables

OPFNEX

	EUCO27	EUCO30	EUCO+33	EUCO+35	EUCO+40
ETS carbon price (€/t of CO ₂ eq.)	42	27	27	20	14
Total GHG emissions reduction					
compared to 1990	-40,7%	-40,8%	-43,0%	-43,9%	-47,2%
GHG emissions reduction in ETS	-43.1%	-43.1%	-44.3%	-44.2%	-48.3%
sectors compared to 2005					
GHG emissions reduction in ESD	-30.2%	-30.3%	-33.7%	-35.5%	-38.7%
sectors compared to 2005					
Share of RE in gross final energy					
consumption	27%	27%	28%	28%	28%
Energy savings target	27%	30%	33%	35%	40%

Low ETS prices do not adversely impact GHG emissions reduction

Ambitious energy savings scenarios are not expected to adversely impact EU competitiveness

OPENEXP					
	EUCO27	EUCO30	EUCO+33	EUCO+35	EUCO+40
Ratio of energy related costs (inclusive of auction payments ETS) to value added for energy intensive industries	40.8%	40.1%	40.0%	39.8%	40.6%
ETS carbon price (€/t of CO2 eq.)	42	27	27	20	14
Auction Payments (annual average €bn '13)	6.8	4.5	4.2	3.1	2.1
Average price of electricity (€ '13/MWh) Energy purchases costs (annual average €bn	164	161	162	161	163
'13)	175.7	173.4	169.5	165.6	158.7
Capital costs (annual average €bn '13)	29.8	30.9	34.7	38.4	50.6
Total energy related costs (annual average €bn '13)	212.4	208.8	208.4	207.2	211.4
Trade balance (€bn '13) E3ME model	803.6	801.4	793.4	768.2	744.0
Trade balance (€bn '13) GEM-E3 model	409.5	400.6	400.0	397.4	396.5

Citizen-friendly energy transition requires going for ambitious EE scenario

Changes in health damage in EUCO scenarios as compared to EUCO27 in 2030

Compared to EUCO27	EUCO20	Elicotas	EUCO+25	EUCO+40
Million life years gained	2 5	2 7	11	16.9
due to less PM2.5	2,5	0,7	11	10,5
Premature deaths ozone avoided (cases per year)	114	337	438	662

Percentage change in real disposable income by socio-economic group

% change in average real income compared to EUCO27 (E3ME)		All HH	Lowest quintile	2nd quintile	3rd quintile	4th quintile	5th quintile
	FUCODO	0.40%	0.1.0%	0.10%	0.45%	0.420/	0.02%
	EUCU3U	0,10%	0,16%	0,18%	0,15%	0,12%	0,03%
No crowding out	EUCO33	0,71%	1,05%	0,99%	0,85%	0,68%	0,44%
	EUCO20	0.10%	0.15%	0 170/	0 1 5 %	0 1 2 9/	0.03%
	EUCUSU	0,10%	0,15%	0,1770	0,15%	0,12%	0,05%
Partial crowding							
out	EUCO33	0,62%	0,93%	0,87%	0,75%	0,61%	0,37%

The cost-effectiveness argument is irrelevant

Investment expenditures in EUCO scenarios

800 Investment expenditures (€ bn 10)200 Average 100 Ω EUCO27 EUCO+33 EUCO+40 EUCO30 EUCO+35 Tertiary Generation and industrial boilers Grid Transport Residential Industry

Transport sector has the highest investment expenditures

Energy system costs in EUCO scenarios

EE direct investment costs are unknown except for insulation

Additional policy action might be needed in some Member States

GDP impacts in the EUCO scenarios at Member State level in 2030 using GEM-E3

Employment impacts in the EUCO scenarios at Member State level in 2030 using GEM-E3

Assumptions used for the macro-economic models need to be disclosed to understand the negative impact of high ambition on GDP and employment in some Member States

EUCO scenarios are mainly based on energy renovation of existing buildings but

Projected changes in final energy demand per sector compared to EUCO27

Strengthening EPBD is a prerequisite for the success of the Clean Energy for All

Renovation rates in EED IA are higher from those of EPBD IA

EED	EUCO27	EUCO30	EUCO3030	EUCO+33	EUCO+35	EUCO+40
2015-2020 Renovation rates	1,5%	1,5%	1,5%	1,5%	1,5%	1,5%
2021-2030 Renovation rates	1,7%	2,1%	2,1%	2,7%	2,9%	3,1%
Number of HH with electric heating (million)	22	30	30	48	48	53

EPBD renovation rates (2015-2030)	Option I	Option II	Option III		
Residential	0,61%-1%	0,61%	5-1,6%		
Non-residential	residential 0,70%-1,14%		0,70%-1,7%		
Heating systems exchange rates	3,6%-4,2%				

EPBD requirements should be aligned with the EED efficiency target

Smart Finance for Smart Buildings (SFSB) is a partial de-risking framework

OPENEXP

SFSB does not bundle national funding (e.g. ETS) with EU ones

Smart Finance for Smart Building initiative won't be enough to renovate Europe

Strengths

-Making energy renovation projects bankable
-Facilitating access to capital to local actors
-Scaling-up energy renovation projects

Weaknesses

-Weak energy requirements for renovation -Bundling national and EU funds not tackled -Investment gap not filled

Smart Finance for Smart Building

OpportunitiesThreats-Triggering technological innovation-EU funds availability unclear after 2020-Modernising the construction sector-Lack of ambitious 2030 energy savings target-Industrialisation of energy renovation-Lack of technical capacity

SFSB impacts should be considered in the EC modelling

